Sets of uniqueness for spherically convergent multiple trigonometric series

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sets of Uniqueness for Spherically Convergent Multiple Trigonometric Series

A subset E of the d-dimensional torus Td is called a set of uniqueness, or U -set, if every multiple trigonometric series spherically converging to 0 outside E vanishes identically. We show that all countable sets are U -sets and also that HJ sets are U -sets for every J . In particular, C × Td−1, where C is the Cantor set, is an H1 set and hence a U -set. We will say that E is a UA-set if ever...

متن کامل

Uniqueness for spherically convergent multiple trigonometric series

In 1870 Cantor proved that representation of a function of one variable by a trigonometric series can be done in only one way. In 1996 Bourgain proved the same thing for spherical convergence and multiple trigonometric series. His proof involves injecting a lot of new ideas into the theory of uniqueness. We give here an exposition of Bourgain’s proof, specialized to the case of dimension 2. Our...

متن کامل

Uniqueness Questions for Multiple Trigonometric Series

We survey some recent results on the uniqueness questions on multiple trigonometric series. Two basic questions, one about series which converges to zero and the other about the series which converge to an integrable function, are asked for four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. We will ...

متن کامل

Uniqueness for multiple trigonometric and Walsh series with convergent rearranged square partial sums

If at each point of a set of positive Lebesgue measure, every rearrangement of a multiple trigonometric series square converges to a finite value, then that series is the Fourier series of a function to which it converges uniformly. If there is at least one point at which every rearrangement of a multiple Walsh series square converges to a finite value, then that series is the Walsh-Fourier ser...

متن کامل

Some spherical uniqueness theorems for multiple trigonometric series

We prove that if a multiple trigonometric series is spherically Abel summable everywhere to an everywhere finite function f(x) which is bounded below by an integrable function, then the series is the Fourier series of f(x) if the coefficients of the multiple trigonometric series satisfy a mild growth condition. As a consequence, we show that if a multiple trigonometric series is spherically con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2002

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-02-03086-6